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Abstract

Following the general principles of noncommutative geometry, it is possible to define a metric on
the space of pure states of the noncommutative algebra generated by the coordinates. This metric
generalizes the usual Riemannian one. We investigate some general properties of this metric in
finite commutative cases corresponding to a metric on a finite set, and also compute explicitly some
distances associated to commutative or noncommutative algebras. © 2001 Elsevier Science B.V.
All rights reserved.
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1. Introduction

Though particle experiments are going further in energy and consequently deeper in
the structure of matter, the geometric structure of space—time is still unknown. Classical
differential geometry does not allow to take seriously into account both general relativity and
guantum mechanics since the latest renounces intuitive geometric concepts while the first
grounds its description of gravitation on purely geometric concepts. Different approaches of
noncommutative differential geometry [1-3] give a mathematical framework for a geometric
understanding of fundamental interactions. Saying geometric understanding, one would like
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to say clearer understanding: for instance, the noncommutative standard model [4-8] gives
a geometric interpretation of the Higgs field together with an estimation on the mass of the
corresponding boson.

But it is still difficult to draw an intuitive picture of a noncommutative space, as one can
do for an Euclidean or even Riemannian space. A noncommutative space is described by a
C*-algebrad, afaithful representation of over a Hilbert spacg, and an operatab acting
on#. D has a compact resolvant and is possibly unbounded. To be precise, the algebra is
restricted to the norm closure of the set of elements.A such that D, 7 (a)] is bounded.

A distance is then defined &Y.A), state space ofl, by

d(@,¥) = sup{|@(a) =¥ @I/I[D,a]ll =1} VP, ¥ € S(A. 1)
aeA
If Ais commutative, pure states correspond to characters. Thanks to Gelfand construction,
they are interpreted as points, adds the algebra of functions over these points. When
is not commutative, this interpretation is no more possible but the distance formula between
pure states remains unchanged.

When A is the algebra of smooth functions over a Riemannian spin manifolthe
space ofZ.2-spinors andD the classical Dirac operator, then the noncommutative distance
coincides with the geodesic distance. Whéris tensorized by an internal algebra, for
instance, the diagonal complexx22 matrices, then one obtains a space of two sheets with
geodesic distance over each of them and a Kaluza—Klein geodesic distance between the two
sheets [1]. Many works have been made on the dimension of algebras of functions over the
noncommutative extension of space—time (see, for instance, Ref. [9] and its references, and
Refs. [10,11]) and it would be interesting to compute the corresponding distances.

Even if this new geometry is a nice candidate for a better understanding of the gravity
coupled with matter, including the standard model, it is plagued with its genetic Euclidean
origin. Nevertheless, it is important to check if distances are calculable and if they can get
a clear physical interpretation regarding with experiments comparison. We investigate here
the first step of this program, paying particular attention to discrete spaces corresponding,
for instance, to the internal degrees of freedom of fermions [5,6]. Previous noncommutative
distances have been considered [12—14] in the case of finite algebras. Moreover, the classical
distance in one-dimensional lattices can be obtained via the noncommutative approach
[15,16].

In Refs. [17,18], the problem is introduced in a general frameworlL. le¢ a Lipschitz
seminorm on a partially ordered real vector spaAcé. determines a metrig;, in the state
spaceS(A):

pL(u, v) = SUE{Iu(a) —v(a)l/L(a) <1} with u,v e S(A).
ae
p1. determines a Lipschitz seminorir),, over the spac@&flS(A)] of affine functions on
S(A):

Ly (f)= sup

{ If () — f(v)
n,veS(A)

/1 # v} with f e Af[S(A)].
o, v)
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As A isisomorphic to a dense subspac@&§E (A)], the question is: under which conditions
onehad ,, = L? Answersare givenin Ref.[18]. Inthe noncommutative framework, taking
L(a) = ||[ D, a]|l, the question becomes: how to characterize the meirazsming from a
Dirac operator?

In this paper, we carry out the calculation of distances in spaces associated to finite-dimen-
sional algebras. It seems natural to restrict to finite-dimensional representation of these al-
gebras since, in the noncommutative approach of the standard model, the internal space is
the space of fermions (more mathematical arguments to avoid infinite representations of
finite-dimensional algebras can be found in Ref. [19]). Therefdiis,a direct sum ot ma-
trix algebras, since any involutive algebra o@&awhich admits a faithful finite-dimensional
representation in a Hilbert space is a direct sum of matrix algebras. £dk, the simplest
interesting case igl = M2(C). The associated space is a fiber space whose base has only
one point and the fiber i§2. Fork = 2, we study the noncommutative space associated to
A= M,(C) @&C, p e N. This is a two-point space with fibé&” over one of the point.
Some applications can be found in Ref. [20], whdre- M>(C) @ C is used to build a first
model of quantized space—time.

Fork > 3, we restrict to commutative algebras. Thér= C* andS(A) is simply a set of
k points. We choosg{ = C*. For the three-point space with any real self-adjoint opetator
and thek point space with some particular operatdrave explicitly compute distances. To
find a Dirac which gives a desired metric, itis enough to inverse formula. This is not possible
in the four-point case for we show that generic distances are roots of polynomials which
cannot be solved by radicals. In particular, this means that we have investigated all possible
explicit distances for generalpoints because surprisingly counterexamples appear already
for k = 4. A possible solution to overcome these difficulties could consist in modifying
our definition of commutative spaces. For instance, using a slightly more complicated
representation afl over a spacé{’ larger thar{, one shows that there always exists an
operatorD’ giving a set of given distances between the points. More@¥e#{’, D’) is a
real spectral triple which fulfills all the axioms of noncommutative geometry.

2. Definition and notations

All along this paper,A is a unitalC*-algebra represented in a Hilbert sp&¢eD is a
self-adjoint operator oft which does not belong to the commutant4fIits components
areDjj, 1 < i, j <n. Ay is the subset of positive elements.dfandS(A) its pure states
space.

Lemma 1. For any two state®, ¥ € S(A),

d(®,¥) = sup{|®(@) —¥@I/I[D,a]l =1}.

aE.A+

Proof. Leté=arg((® — ¥)(aop)), whereag € A reaches the supremum in (1), namely

I[D. aol|l = 1, (P — ¥)(ao)| = dist(®, ¥).
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The supremum is also reached for the self-adjoint elegrt %(ao e 0 4 ag e’ e A
since

I[D, bo]ll < %II[D,ao]II + %II[D,aS]II <1
(@ — W)(bo)| = |3dist(@, ¥) + dist(@, ¥)| = dist(®, ¥).

The same is true fafg = bg + ||bol|I € A4, SO we restrict tod .
Suppose now[D, co]|| < 1. Takeeg=co/||[ D, col| € Ay, then
|P(co) — ¥(co)l
I[D, eo]ll = 1, |®(e0) — ¥ (eo)| = —————— > |P(co) — ¥ (co)l,
I[D, colll
which is impossible sincey is chosen to reach the supremum.|$D, co]|| = 1.
If the supremum is not reached, the proof uses a sequepgef elements ofA. O

e Once for all, any element € A that appears in a proof is self-adjoint.

e The canonical basis d” (or R” in case) is denoted hyt), |12), ..., |n).

e WhenA = M,(C), a pure statev: is determined by a normalized vectpre C" :
wg(a) = E*a€ Ya € M,(C). Two normalized vectors determine the same pure state if
and only if they are equal up to a phase. In other teii8/,, (C)) = CP" 1.

e For any unitary operatot/ of # implementing.4, the jauge transformed ab: is
@¢(@)=ws(UaU™h) Va e A. If D=UTIDU, then dj(@s, &;) = dp(wg, we)
for

sup{|(@ — @) (@)|/IU'DU, a]|| = 1}

a€A+

= sup {l(wg — w)(UaUh|/|I[D, Uau™ ]| = 1}.
UaU-le A,

3. One point space

The first nontrivial example with a single matrix algebradis= M>(C), represented in
H = C? by

ail a2
Asa= ( ) .
a1 a2
D is a 2x 2 self-adjoint matrix with two real and distinct eigenvalugs D2. S(A) = cp?

is isomorphic to the sphet¥?. An explicit one-to-one correspondence is the Hopf fibration
[21]: £ = (&1, &) € CPlis associated t@ug, b, cz) € S2 by

az=2Re£18),  be=2Im(£182)  c:=|&1]% — |62)%

Proposition 2. d(wg, w;) = 2y/1— [(£,¢)|2/|D1 — Dy| if & = ¢¢, and is infinite other-
wise
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Proof. Let U be the unitary operator off such thatD=U"1DU = diag(D1, D2). A

direct computation yield§[D, a]|| = |a12/|D1 — D2|, thus the norm condition in (1)
becomes
laiz] < ————. 2
D1 — D3| @)

Furthermore(ws — w¢)(a) = Zﬁjzlaij & —Ge)).

If |£1] # |¢1], thena with all coefficients zero, excepis = L, verifies the norm condition
(2) foranyL € R*, and|(ws — w¢)(@)| = LI|£1]? — [¢1]?]. Thus,d 5 (ws, ;) = +00.

If |&1] = |¢1], then|é&2] = |¢2] since||&]| = [|¢]| = 1. Socg = ¢, and

(g — w¢) (@) = |2 Relar2(6182 — £182))| < 2lai2l|(Eré2 — $182)]. 3)
As any vector ofCP"~1 is defined up to a phase, we assume that ¢; is real. Let
Oe=arg(&2) ando, =ary(¢2). Takeair = azo = 0 and argas;) = %(n — 0 —6;). Then

IRe(a12(E162 — C162))| = la2| €1] |82] [2SIN(5 (O — 0,))| = la12| €12 — T182).

a reaches the upper bound in (3) and verifies the norm condition (2) as far as one chooses
la12| = 1/|1D1 — D2|. Sod(we, ;) = (2/|D1 — D2))|€1&2 — L18a|. TrEE* — ¢5%)? =
2|E152—122/%. Developing the trace yields4| (£, ¢)1? = |&&1—i¢1|? thusdp (w, ;) =
dp(@g, ) = dp(U™, U) = dj(we, o) = (2/|D1 — D2))y/1— (£, ¢)2 0

We say that two states;, w; € S(A) are at the same altitudedf = c;. By an easy

calculation, for two such stateg(wg, w;) = (2/|D1 — D2|)\/(a,g —ag)?+ (bg — be)2.
In other terms, up to a constant factdris nothing but the Euclidean distance restricted
to planes of constant altitude. The distance between two planes of different altitude is
infinite.

In a one point space with a fiber of higher dimension tfi£n one needs an explicit
formula for the norm of a self-adjointx n complex matrix. This is known to be generically
impossible fom > 5.

4. Two-point space
Consider the algebrd = M, (C) & C represented ol = C" & C by
x 0
ABa:( ) x e M,C), yeC.
0y
The simplest interesting operator is
0 m
D =

with m € C" a nonzero column vecto§(A) is the union of the single pure state of
C, wo=ldentity, withS(M,,(C)).
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Proposition 3.

! if £ andm are colinear
E— m
1 d(wg, wo) = | |lm||

+o00 othewise

ﬁ 1—1)(€, )2 if (¢ — ¢€?)andm are
m

2. d(wg, 0;) = colinear for somé « [0, 2|,

400 othemwise

Proof. We may assume thdiin| = 1 for dividing D by ||m| means multiplying distances
by ||m||. Thus, there is a unitary operatote M,,(C) such thain = u|1). With

u 0
U= ,

D=U"1DU andz=x — yl, (self-adjoint by Lemma 1) one has

2
0 —z1) dls 0 o

- Sl @
<<1|z 0 )H H( 0 <1IZZ*I1>>H 2zl

i=1

I[D,a]|l? =

Note that|[[ D, a]||? = 1 implies|z;1| < 1 Vi € {1, n}.
1. (wg —wo)(a) = §*x& —y = %26 = 37 _1&izij§;.

Assume, # Ofork € {2, n}. Take the matrix with all coefficients zero excepix =
L € R*. By (4), z satisfies the norm condition of formula (1) afe: — wo)(a)| =
|&|2L. Thus,d; (ws, wg,) = +00.

Assumet; = 0 Vi € {2,n}: there is constant such thatt = €?|1). So [(we —
wo)(a)| = |z11] < 1. This upper bound is reached bwvith all coefficients zero except
zi1=1

2. (0 —wp)(a) = 377 42 (Ei&j — GiL)).

Assume(€,& — ¢p¢) # 0 for p, 1 € {2,n}. The proof is similar as (1) with = 0
exceptzp = L.

Assumeg;&; — ;¢; = 0 Vi, j € {2,n}. This is equivalent t&; = ¢; €7 with 6 a
constant. In other wordgé — ¢ €?) ~ |1). Furthermore, sincgt||2 = ||¢||2 = 1, one
has|é1| = [¢1]. Thus,

= 2| Reza g1 — Gidw)

i=2

> zijGiEj - Gig)))

i,j=1

< 2J Dzsz Y IEE - Gl < ZJ > lEE — Gl

i=2 i=2 i=2

)1/2. zreachesthe upper bound

Takez = Oexcepty; = |&&1—¢;¢al (3F_11&i81 — ¢i¢al?
and verifies the norm conditions. Thuf; (wg, ;) = 2\/21'.’:2@,-51 —£;¢1/? and we

conclude asin Proposition 2. O
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The casesA = M,(C) & M,(C) is not studied here, neither is the space associated to
a sum of three or more algebras with at least a noncommutative one. We focus on sums of
commutative algebras. Thehis isomorphic tOEBf:lC. The space associatedite= 1 has
no interest. Withk = 2, there is only one distance to compute which is equal/i®1y|.
The generic casds= 3, 4 with a real operatob, and some examples with=n € N are
considered below. Before, we present general results on commutative finite spaces.

5. Commutative finite spaces

An n-point commutative space is determined by a triét #, D) in which A = @/[C
is represented ovéi = C" as a diagonal matrix:

aip O ... O

az

Asa=| 1,

0 ... ... ay

wherea; € C, but for distance computing we restrict &p ¢ R* thanks to Lemma 1.
To make computations easier, we only consider operddonsth real entries. A only
appears through its commutatdp [a], we assume that it has the following form:

0 Do ... - D1,
D12 D23 0
D=| : Dxs O : with Djj € R.
anl,n
Dy, ... ... Du_1, 0

Pure states can be interpreted as points ofiguoint space whose function algebra is
A : a(i)=a;. The distance between two poiritg of this finite space is
d(@, j) = sup{la; —a;l|/I[D,a]ll = 1}. (5)
ac At
In finite spacespP may be interpreted as the adjacency matrix of a lattice [13]: two points
i and j are connected if and only i # 0. For instance, in the four-point space, the
restriction toD13 = D24 = 0 corresponds to a cyclic graph:

1 2
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A pathy; is a sequence gb distinct points(i, iz, ..., ip—1, j) With D;;, ., # OVk €
{1, p — 1}. Sinced(1,2) = 1/|D1o| in a two-point space, the length ofj is by
definition

r—1 1
Liw)=)
k=1

_ |Dikik+1|

Two pointsi, j are said connected if there exists at least one pathhe geodesic distance
Lj; is by definition the length of the shortest path connectingd;.

Proposition 4.

1. Let D’ be the operator obtained by canceling one or several lines and the corresponding
columns of D. Thedp > dp.

2. The distance between two points i and j depends only on the matrix elements corre-
sponding to points situated on a path joining i and |

3. The distance between two points is finite if and only if they are connected

Proof.

1. Letdefinee € Abye; = 0 iftheith line and column are cancelleg,= 1 elsewheree
is a projection, commuting witil, andD’ = eDe Thus,||[D’, a]|| < |[D, a]|| Va € A.
So

suplla; — a;l/I[D, a]ll < 1} = suflla; — a;|/II[D’, a]ll < 1}.

2. Letrlj denote the graph associated to the set of points belonging to any;paihd /j
the set of points which are not on any pgfh Any point of I is connected by at most
one path taljj. In other termsy! e [ there is at most one point; € Ij such that
andm, are connected angn, has all its points (except;) in Ij.
Let D’ be the operator obtained by cancellation of all lines and columns associated
to points of/j. Assume that the supremum in (5) wih is reached by’ € A = C".
Considera € C" such thatz, = a;] except for the points of for whicha; = a,,, or

a; = 0 if m; does not exist. Then|[D, a]|| = ||[D’, a']|l, sodp(i, j) = dp'(, j). By
(1),dp(, j) < d,(, j). Hence the result.
3. Supposéand; are connected. There is atleastone patk: (i, i2, ..., i,—1, j) Whose

lengthis the geodesic distantg. Let obtainD’ by canceling all lines and columns which
do not correspond to points gf. Thend (i, j) < dp'(i, j). By the triangular inequality,
one has

p—1 p—1 1
dp (i, j) < ZdD'(ik, Ik+1) = Zﬁil‘ij,
k=1 k=1 Uelk+1

whered(i, j) is smaller than the geodesic distance, thus it is finite.

If i andj are not connected, definee C" bya; =t > 0,a; = a; if k andi are
connectedg, = 0 otherwise. Thenlp, a] = 0 and|a; — a;| = t. Ast is arbitrary,d (i, j)
is infinite. O
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For simplification purpose, we write
aj=a; — a;, x=ay1, Xi=ajy11, 2<i<n-—1 (6)
Inthen = 3 andn = 4 point case, this reduces to

y=azi, z=aay. (7)

6. Distance on a regular space

An n-point commutative space is called regular when all coefficients of opebatye
equal:

D = {Djj} = {k(1 - §j)}, keR.

Proposition 5.
1. The distance between two pointg of a regular space of constant k is

1 /2

g, j) = TV

2. If the link, and only this link, between two-point i» is cut, D;,;, = 0, then

. 1 2
d(11112)=m "t

Proof. In the regular space, the problem is symmetrical: all distances are equal and we
computed (1, 2). When a link is cut, we taka = 1, i» = 2 to fix notations, and denote by
D’ the operatoD with D12 = 0. In both case, (5) and (6) yield

d(1,2) = sup{|x|/[I[DorD’, a]| = 1}. (8)

aG.A+

We first compute the norm of the commutator, and then find the supremum.

Lemma 6.

n n
LoD, al> =1k*Y_ > af

i=1 j=i+1

n—1 n—1
= kPP | X2+ [P+ @ —x)?+ Y (- x))?
i=2 j=it1
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I[D’, a]|?
2
|k|2 n n n n n n
_ 2 2 2 2
A DOB R T Ol o TS o o
i=1 j=i+1 i=1 j=i+1 i=3 j=i+1
—-(1,2) —-(1,2)
|k|2 n—1 n—1
= | X e+ 3w
i=2 j=i+1
n—1 n—1 2 n—-1 n-1
+ Dol e—x?+ > i—xp? | | =42 > (xi—xj)?
i=2 j=i+1 i=2 j=i+1

2. Forthe regular space, the supremum of X&) is reached when alt;’s are equal
Proof.
1. C=i[D, a]is then x n matrix
0 iaj_z
ia21 iaij
iayi
0

with rank < 2 since its kernel is generated by ttve— 2) independent vectors

A = <ai2; a—lk; 0;...;1...;0; ) , 1 being at thekth position 3 < k < n.
az1 azi
Moreover C is Hermitian and traceless, so it has two nonzero real eigenvalues
+A. Thus, A = “(TCZ‘) A direct computation yields. = k\/Z?zl Y aip?.
Finally, [I[D,a]ll = lli[D.a]ll = |Al = Ikl\/Z?zl > i1(aij)?
= Wkly¥? + Y03 52+ X0f Y — xp)
Let C'=i[D’, a]. C' is then x n matrix

0 0 ia13
0 0 iajj
C =k
iaz1

iayi 0
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with rank < 4 since kelC’ is generated by thé: — 4) independent vectors

aps a
A/p =(O;O;ﬁ;ﬁ;o;...;l;...;O),
a43 d4q3

1 beingatthepth position 5< p <n.

BecauseC’ is Hermitian andC’ = —C’, it has four real eigenvalues).;, £15. Thus,
its characteristic polynomial is

= X" = ()‘3_2 + )\./22)Xn_2 + )\&2)\'/22Xn—4. (9)
A direct computation yields
1 n n
P = STHCR =Ky YT ().
i=1 j=i+1
-1.2

The coefficient ofX”~* is the sum of all the minors of”’ of degree 4. A minor

M, k, 1, p) composed with the first (or second column) and three other columns

k.1, p ¢ {1, 2} (and the associated lines) is also a minoCofAs C is of rank < 2, its

minors of degree greater than 2 are nullp@L, &, [, p) = M (2, k, 1, p) = 0. The same

is true for the minord1(q, k, I, p) with g ¢ {1, 2}. Finally, the only nonzero minors are

0 0 iay ialp

0 iay ia

M@ 2.1, p) =k*Det| ~ 2 e

la;1 1ay2 0 1ap

iapl iapz ap| 0
2
ay ai
= k* Det Pl = k4a§1as|.
az  azp

Summing all these minors give§2A,2 = 2,5 /_, ZZ=1+1‘1§|- Then, solving (9) yields

n n
D/ 2 _ |k|2 2
D" all? ==~ 3 3 4
i=1 j=i+1
-2

n n n n
X X |~k X 4
i=1 j=i+1 i=3 j=i+1

-(12
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. -1 -1 -1
2. Let f(x,x2, ..., Xp-1)=x% + Y0y w7 + (x —xi)? 4+ 205y Y (i — xj)? and
suppose thatx, x2, ..., x,—1) € R" reaches the supremum, namely

f(x’x27"‘axn71)= d(172)=|x|5

W’

then

2.1. x is positive from the global parity off, x can be chosen positive.

2.2.x; < 3xVi € {2,...,n — 1}: suppose thap of thex;’s are greater thagx and
denote them generically by,. Consider now thgn — 1)-uplet in which allx,’s
are replaced by.x. Then, f decreases for2 + (x — x,)? > 7x2 + (x — 3x)? and
(x; —xp)? > (x; — 3x)2. Fixing the values of the remaining’s leads to se¢ as
a function of the single variable:

f @) :X2+P<%)2+in2+p(x— %)2+Z(x—x,~)2
+ZP (% - )Ci)z + Z Z(xj —x)?,
i i j
f(x) = 2x + 2px+ ZZ(x —x) + Zp (% _ Xi) .

Asx; < 3x < x, f'(x) > Owhenx > 0. f is continue and i, o f (x) = -+00,
sothereisig > x such thatf (xo) = 1/|k|2. In other terms, the initialz — 1)-uplet

in x,, does not reach the supremum which is in contradiction with our hypothesis.

Sop =0.
2.3. x; > 0Vi € {2,...,n — 1}: the proof is the same by replacing ajl< 0 by %x.
2.4. All x;'s are equal let A and A be the two smallest value of the's with A < A. If
A = A, then it comes immediately that all’s are equal. 1. # A, then

O<i<A<x<ix Vie{2,...n-1).

Assume thatn of thex;’s are equal td.. Summing over; # A, one obtains

fOxz . xe) =x2+maZ 4+ ) xF+ Y (= x)?+m(x — 2)?

l 1
+Zm(k — x,')z + Z(x,' — xj')z.
i ij

Fix the values ofi; # A and consider now not like a constant but like the value of a

variablexmin. Then f can be seen as a functigi of the two variablesmy, andx with

0 fm

0Xmin

(Xmin, X) = 2MXmin + 2m (Xmin — X) + sz(xmin - Xi).

1

AS (3fm/0xmin) Xmin, X) < O for xmin € [X, A[, one hasf,, (A, x) < fu(A,x) =
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1/|k|2. Moreover,

ﬂ(A X) =20 +2mx —A)+ Y 2(x —x) >0,

i
so there isqg > x such thatf,, (xo, A) = 1/|k|?, which is inconsistent with our hypoth-
esis. So. = A. O

Proof of Proposition 5.
1. According to Lemma 6y; = x2, 2 <i < n — 1. The norm condition in (8) becomes

2(n — 2)x2 +[2(2 — n)x]x2 + |:(n —1x2 — |kjiz:|

which has no real solutions i unlessx| < (1/|k|)~/2/n. This upper bound is reached
whenx; = x/2 = (1/2|k|)\/2/_n

2. Letha(x, x)= Y0y x2 + (x — x)2, ho(xi)= Y12y Y12l (i — xj)%, g(x, xi)=hy
(x, xi) — 2x2. Lemma 6 yields

I[D’, all? = 11kI?(h1 + ho + /h2 + h3 + 2ghy). (10)

Letxo = SUR, y,crfx/h1(x, x;) = 1/|k|%}. As g andhg are both positive, (10) implies
thatd (1, 2) < xp. Imitating (1), one finds this upper bound is reached whem; &lare

equal, andg = (1/1k])~/2/(n — 2). O
In finite spaces which are not regular, distances are not always explicitly computable.
The casesg = 3 andn = 4 are considered below.

7. Three-point space

Proposition 7. For a three-point space with operator

0 D2 D13
D=|Di 0 D],
D13 Doz O
D2, + D2
d(1.2) =\/ > L2 > DjeR
DZ,D$;+ D%,D3;3+ D53D75

the other distances come from suitable permutations of indices

Proof. Eq. (5) and notations (7) gives

0 —D1ox —D13y
d1,2) = Sjp x/II[D,a]ll = ||| Di2x 0 Da3(x —y) || =1
aes D13y  Do3(y —x) 0
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By direct calculation)|[ D, a]|| = v/ D23(x — y)? + D13y2 + D12x2. Thus,d(1, 2) is the
largest value of for which there is a pointx, y) belonging to the ellipse

(D33 + D3p)x? + (D334 D39)y* — 2D53xy = 1. (11)

d(1, 2) is the positivex for which the equation iy (11) has a zero discriminant, that is for

2 2

_ Diz+ D34

Y=\ D2 D2+ D2D2 + p2.D2. H
12D13+ D1pDo3+ D313

The three distances verify an inequality of the triangle “power two” since
d(1,2%+d(2,3)* > d(1,3), (12)

and two others inequality by permutations. The question rises of inverting the problem: for
three positive number&, b, ¢) verifying (12), is there any operat@ giving (a, b, ¢) as
noncommutative distances?

Proposition 8. Leta, b, ¢ € R verifyinga® 4+ b? > ¢2, b?> +c? > a?,a?+c? > b%. Then,
there is an operator D such that(1, 2) = a, d(1, 3) = b, d(2, 3) = ¢, explicitly given by

Doy 2(b2 4 ¢2 — a?)
12= a@a+b+c)(—a+b+co)a—-b+o)a+b—c)

whereD13 and D23 coming from permutations af b, c.

Proof. Writing 1/D?, = Ri12, 1/D3; = Rys, 1/D?; = Ry3, Proposition 7 gives
1 _ 1 1
d(1,22  Riz  Roz+ Rz’

whered (1, 2)? is the electrical resistance between points 1 and 2 of the triangle circuit.
Finding Djj means finding three elemenk that induce a resistane&(, 7)? between
pointsi, and j. A classical result [22] indicates that the triangle circuit is equivalent to a
stellar circuit(r1, 2, r3) with

1
R1p = E(rlrz + rir3 + rora). (13)
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R13 andR23 coming from suitable permutations of indices. In the stellar circuit

d(1,22%=r1+r2, 2r1 =d(1,22+d(1, 3% - d(2, 37>
d1,32=r1+r3, = 2rp=d(1,22+d(2,3)2%-d(,3)?
d2,32=rs+r3, 2r3 =d(1,3)%2+d(2,3)2—d(1, 272

Inserting in (13), this gives

. 2(d(L. 3)2 + d(2.3)2 — d(1, 2)2) .
2 @M. 22d(1.32 + d(1. 2%d(2. 3 + d(L 3)%d(2.3)2)

—d(1,2*—d(1,3)*—d(2,3)*

8. Four-point space

Computing distances of anpoint space is endless. A priori the norm computation in
Lemma 1 will be generically not possible faer> 10 since P, a] is an antisymmetric real
matrix. However, even if fon < 9, the norm is always calculable, the convexity problem
of Lemma 1 implies that the distance is not always calculable far4. In this sense, this
ends up the theory of explicit distancesipoint spaces.

Notations (7) are used as well as

Theorem 9.

1. d(1, 2) is a root of a polynomial of degre®< 12.

2. d(1, 2) is generically not solvable by radicals

3. Itis computable in the following case: whépd, = 1/ds = oo,

dy if d? <d2, else

d1\/(d3 + dy dg)?

\/df + ds?\/d32 +d

\/ d2(d2 + d2)(d? + d2)
(d3ds — d1dg)?

d?(d3 + d2)
max ,
(d3 + da)? + (d1 — ds)?

d?(d2 — d?)
(d3 —da)?+ (d1+dp)? |’

if didg = dada, else

if C <0, else

d(1,2) =
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whereC = ((d3+da)?ds+ (d1— ) (d3da — d§)) ((d3 — da)®de + (d1 +de) (dada+df)).

Jd5+d? if (d5 +d§) < (did — dada)?,
JdZ +d? if (d?+d32) < (dids — d3da)?,

d(1,3) = max( V(d1dz + dads)?

V(ds+da)? + (dy — dg)?’
v (dads + dads)? otherwise
V(d3 — da)? + (d1 + dp)?

Permutations of thd;’s gived(2, 3), d(3, 4), d(1, 4) (resp d(2, 4)) fromd (1, 2) (resp
d(1,3)).

The rest of this section is devoted to the Proof of Theorem 9.

T
d1 dy ds
X 0 X—y x-—z2 x
d d d - 4
. [D,a] = yl y—x 4 y_52 , Fa=1y Yae A, =R .
d> da ds z
. z—X z—y
ds ds ds

e ForF=(x, y, z) € R3, define the functions:
T T S e S G S O
2Tetet T TTa T
1 2 3 4 5 6
o Xy —2)  zle—y) | y(@—x)
Br) =
d1dg d3dy dods

n(F) =a(i) +a®)? — 46(F)2, f(H)=a(@) — B(H)* -1,
and the surfaces” and F:
N={F e R®/n(F) = 2}, F={F e R¥/f(F) =0} with N C F.

9

af) =

)

Lemma 10.
1. Fora € Ay, |I[D. dll? = 3n(Fa).
2. For7 e N such thaw(7) = 2, grad f)(F) = 0.

Proof.

1. The four eigenvalues ¢fD, a] arer; = i(l/ﬁ)m@): <o
LD, ]l = 3 (a + \/oez——%z) 7).
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2. We show thatof/dy)(¥) = 0, the proof being the same for the other components of
grad f). As7 e N' c F anda(7) = 2, B(7) = +1. If B(F) = 1, then

R R af . Jda .08 . do B .
a(F) = 26(F), a—f(r> =2 280 L5 = L5 - 2% ),
y dy dy dy dy

Explicit calculation ofx () — 28(¥) = 0 shows that

r_r-z Y _xTX L _X*7)

dy dg ’ dy ds ’ d3  da
which leads to(da/0y)(¥) — 2(08/9y)(¥) = 0. The proof is the same if assuming
() =—1. O

Thanks to notations and lemma above, (5) leads to
d(1,2) = sup{(1]74|1)/7a € N} (14)

This formulais not useful fak is not defined by a quadratic form. Itis easier to work wAth
Proposition 11. d(1, 2) € {(1|F|1)/7 € F and(3f/dy)(F) = (3f/9z)(F) = O}.

Proof. The supremum in (14) is reached at a paisuch thagTaﬁn)(?), if it is defined,
is parallel to thex axis. If a(¥) = 2, thengTa)ctn)(?) is not defined butof/0y)(F) =
(3f/9z)(¥) = 0 by Lemma 10. lfx(r) # 2, thengr_a)ctf)(7) is collinear togr_a)ctn)(F),
s0(3f/9y)(F) = (3f/9z)(¥) = 0. To complete the proof, one just remarks thate R3,
there isa € A, such thatr = 7,, for instanceag = (¢£,& — x,& — y, & — z) where
§=sup|x|, |yl, lz]}. U

According to this proposition, the distance is a common root of a polynomial in several
variables and its various derivatives. Before undertaking explicit calculations, we recall
general results about polynomial systems.

Notes on systems of polynomial equatidret P and Q be two polynomials of the form

n—1

P(x) = apx" + ap_1x""" 4+ - +ao, Q(x) = byx™ + by—1x™ "1+ -+ bo

with a,, b, # 0. Without calculating the rootg;, ¢; of P, Q, one finds by algebraic
manipulations [23] of the coefficients andb; the resultant o and Q:

ResP, O)=ay'by [[(pi—qj). 1<i<n, 1<j<m, (15)
iJ
Reg P, Q) is a polynomial in they;’s andb;’s. P and Q have a common root if and only
if their resultant is zero. A particular resultant is the discriminant:
Dis(P)=RegP, P').

P has a double root if and only if D{®) = 0. If P andQ are polynomials irx, y, z, then
Res[P, Q, y] denotes the resultant df and Q seen as a polynomial in. Equivalently,
Dis[ P, 7] stands for discriminant of seen as a polynomial in
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Proposition 12. Let P(x, y, z) be a polynomial of degrezin z, whose coefficients are real
functions of x and y. I (xo, yo, zo) = (8 P/3dy)(x0, Yo, z0) = (3 P/3z)(x0, yo,z0) = O
for some(xo, yo, zo) € R3, thenxg is a root of the polynomiaDis[Dis(P, z), y], and yg is

a double root of the polynomi@is(P, z) (xo, y).

Proof. Writing P(x, y, z) = a(x, y)z% + b(x, y)z + ¢(x, y), a direct computation yields

. aVv d ob d
V=Dis(P, z) = a(dac— b?),  — = “L(8ac— b?) — 2ab"2 + 4a?L,
ay ay ay ay
oP oP ad ab d
Res| —, —,z =b2—a—2ab—+4a2—c.
dy 0z ay ay ay

P(x0, y0,20) = (3P/dz)(x0, yo. z0) implies V (xo, yo) = 0, i.e. (8ac — b?)(xg, yo) =
b?(x0, yo), thus

Res oP 0P ( ) = 8V( )
ayaazyz xO:)’O _ay xO,.YO-
Therefore,(d P/dy)(xo, Yo, z0) = (3P /3z)(xo, yo. zo) implies (aV/dy)(xo, yo) = 0 =
V (x0, y0), thusyg is a double root o¥ (xg, y) and

Dis(V, y)(xo) = Dis[Dis[P, z], y](xo) = O. 0

Proof of Theorem 9. Propositions 11 and 12 yields
d(1,2) € {x/Dis[V(x, y), y] = 0} with V(x,y) = Dis[f(x,y, 2), z].

Instead ofV (x, y), one uses the effective form without the corrective tefth” appearing
in (15), so that zeros of correspond exactly to the existence of a common rootg of
andaf/dy:

Dis(f, z))

nn fn2n—1

Veii (x, y)ﬁNumerator(

with f,, the leading coefficient of seen as a polynomial imandn = degf. Note that the
numerator is taken after a possible (but not always possible) simplification of the fraction.
1. By direct computationVes (x, y) = V; y', 0 < i < 4. Exact expressions of thé’s
are given in Appendix A. They are polynomialinof the form: Va(x) = vy, Va(x) =
v3,x, Vo(x) = v22x2 + vy, Va(x) = v13x3 + vy x, Vo(x) = v04x4 + vozx2 + vg,. The
discriminant/ of a polynomialC = C;y' of degree four is
J(C)=Res[, C'] = Ca4(C3(C3C5 — 4C3C3 + 18CoC1C2C3
—Co(4C3 + 27CoC3)) 4 2(—2C3(C? — 4CoC2)
+C1C2(9C% — 40CoC2)C3 — 3Co(C? — 24CoC2)C3)Cy
—(27CT — 144CoC2C, + 128C3C3
+192C3C1C3)CE 4 256C3C3).

ReplacingC; by V; (x) shows that/ is an even polynomial in of degreel < 12.
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2. We compute an explicit counterexample: assuine- dy, = d3 = ds = dg = 1 and
1/ds = 0. Then

3,0 =x" 4y 4+ 2+ =P+ (- — (x(y — ) +2lx — )2
It is a polynomial of degree 2 in the variablesy andz. Direct computation gives

Vert (x, ) = 2 — 6y% + 3y* + dx?(—1 + y?) — dxy(-1+)?),
Dis(Vefr, y) = —768(—54 — 54x? + 135¢* + 296¢® — 368¢8 4 128¢19).

Let p(x) = —128¢° 4 368¢* — 296¢3 — 135¢2 4 54x + 54. p has one real rooty, two
distinct complex ones; andx4 and their conjugatess andxs. Galois theory shows
that p is not solvable by radical (for a comprehensive presentation see Ref. [24]):

pisirreductible ovefZ because itis irreductible ovés. Indeed modulo 5 it becomes
q(x) = 2(x°+4x*+ 2x3 + 2x + 2) which has no roots ifis. Thereforep is irreductible
overQ.

Let E/Q be a splitting field extension gf. As p has five distinct roots, its Galois
groupG = Gal(E/Q) is isomorphic to a subgroup of the symmetry graigowhich
is the permutation group af={x1, x2, x3, x4, xs5}. AS p has no repeated rootg, is
separable s¢G| = [E/Q] where |G| denotes the order @& and [E/Q] is the index,
i.e. the number of cosse€d in G. If « is a root of p then [Q(«), Q] = 5 s0|G| =
[E/Q] = [E/Q()][Q(x), Q] is divisible by 5. Thus contains an element of order
5: the 5-cycler = (12345.

The restriction toX of the complex conjugation gives rise to an elementf G:

o = (23)(45). As o is of order 2,|G| is divisible by 2. Moreoverro = (124 € G

is of order 3 which divide$G|. Thus,|G| is a multiple of 5x 2 x 3 = 30 and divides
|S5] = 120. SinceSs has no subgroup of order 3[@;| € {60, 120}. If |G| = 60 then
G = As butt ¢ As. SOG = Ss.

S, is solvable fom < 4 but is not solvable for > 5, soG is not solvable. Then, by
Galois theoremp is not solvable by radicals.

3. Whends = d5 = 0 andd1dg # d3zdy:

Dis(Veft) = —16d1%d3%a3%d3 4 d% + d3)(x® — d?)(x*(dads — d1de)?
—d?(d2 + d2)(d2 + d2))(x*((d3 — da)* + (dy + dp)?)
—d2(d3 — da)®?(x2((d3 + da)? + (d1 — de)?) — d?(d3 + ds)?)?.

This polynomial has four single rootisxg, +x1 and four double roots-x;, +x3:

\/(d§+d§)(d§+d§)
= |dq], =|d ,
xo = |da] x1 = |d1| dada — dude)
y |\/ @3 +d}) y |\/ (@ —dp)
X2 = , X3 = .
27N (ds + da)? + (d1 — db)? 37N (s — da)? + (d1 + db)?

By Propositions 11 and 12(1, 2) is one of these;'s, and the associated is a double
root of Vet (xo, y). The corresponding; is determined by solving (x;, y;,z) = 0.
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Then one checks under which conditions eacherifiesn(x;, y;, z;) = 2 and finally
take the greatest one. Considering one hasy = di, zo = 0, and

2 if df < dg,

d2 (d2 _ d2)2
n(Xoﬁyo,Zo)=1+—§+,/%= d? _
dg dg 2—=>2 |if df > dg.

2
d6

Therefore,xg may be solution only iﬂlz < dg. Likewise, with the corresponding
andz; given in Appendix A, one checks that cannot be solution unlegs < 0. On
the contrary,xo andx3 may always be solutions for there ayg z»> and ys, z3 such
thatn(xz, y2, z2) = n(x3, y3,z3) = 2 under no particular condition. By Proposition
2, canceling all links excepts, d(1,2) < xo. So if d? < d2 thend(1,2) = xo.
As x1 > xp andx1 > x3,d(1,2) = x1 if C < 0, otherwised (1, 2) = max(x1, x2).
When didsg = dads, x1 is not defined but the proof follows the same
way.

Calculation ofd(1, 3) is the same, except we are searching the maximum. of
Dis(V, x) is a polynomial iny of degree 12 with single rootsyg, +y1 and double
roots+yo, +y3:

did3 + dads
yo=m, y1=m, y2=d1 | l ’
V(d3 + da)2 + (d1 — dp)?

_ |d1d3 + dads|
V(ds — da)? + (d1 + dg)?

y3

With the associated;, z; given in Appendix A, one checks thag (resp.y1) may be
solution if (@2 + d2)? < (dads — d1de)? (resp.(di +d2)? < (dads — dids)?). As above,
y2 and y3 may always be solution. Then, remark that y3 < yp andy2, y3 < y1.
Finally, yo andy; cannot be simultaneous distinct solutions for adding both conditions
yields yo = y1. O

The four-point space shows that there is no hope to find a general formula for the metric
in any commutative finite spaces: distances cannot be read directly in the Dirac operator
through a finite algorithm. Computing the metric requires a more pragmatic approach and
shall be undertaken case by case.

Consequently, the question of characterizing those metrics which come from a Dirac
operator has still no answer: in a three-point space, one knows that the metrics satisfying
(12) come from the Dirac operator given by Proposition 8, but this is no longer true in
a four-point space for one does not have formulas to invert. However, a solution exists
which consists in relaxing one of the constraint over our triplets, namely the choice of
the representation spagé. Thus, as it is shown in the following section, for any given
metric of ann-point space, one can build a corresponding Dirac operator. Moreover, the
triplet obtained is then a spectral triple which satisfies the axioms of noncommutative
geometry.
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9. Distances and axioms of noncommutative geometry

In the previous discussion, we worked with triplét, 7, D) as if they satisfied all the

axioms of noncommutative geometry. These axioms are introduced in order to recover the
standard spin and Riemannian geometries in the commutative case [4]. Accordingly, for
our distances to be bonafide noncommutative generalizations of Riemannian metrics, they

have to be computed using triples satisfying all these axioms.

However, these axioms lead, in the finite case [25], to matrices whose size increases
rapidly with n and thus prevents any computation except in few simple cases. This is the
reason why we did not use these axioms up to now, but we shall see that the axioms do not

put any constraints on the distances.

Proposition 13. Let (djj)1<;, j<n,i+; b€ any finite sequence of possibly infinite strictly
positive numbers such thal; = dj andd;j < dik + dij. Then there exists a spectral
triple (A, H, D) with 4 = C”" satisfying all the axioms, and such that the resulting dis-
tance on the set of pure states4is given by the numbers .

To proceed, we shall first prove the following lemma.

Lemma 14. There is a spectral triplé.A, H, D) with A = C" satisfying all the axioms
such that

la; — ajl

IID,7@]l= sup ——

: (16)
1<ij<n,izj  di

wherea = (ay, ..., a,) € C" andnw denotes the representation.dfon #.

Proof. The proofis by induction on.

The first nontrivial case is = 2. We taked, = C2 and#, = C3. The representation
72 and the chiralityy, are both diagonal and are given by(x1, x2) = diag(x1, x2, x2)
andy, = diag(1, —1, 1). The Dirac operatoD, and the charge conjugatigr are defined
as

1
0 —_ 0
di2 0 0 1
D ! 0 ! T 01 0]|cC
2= - - 9 2= 9
d12 di2
0 1 0 1 0 O
d12

whereC is the complex conjugation and we setii; = 0 if d12 = oo.
In the finite case, all axioms reduce to tieality, first-order, orientability andPoincaré

duality axioms [25]. In the present case, the first two are commutation relations easy to
check due to the commutative nature of the algebra. The orientability axiom is fulfilled by

writing the chirality as

x2 = m2(1, —) Joma(—1, Ty *.
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The multiplicity matrix is

(0 1
ne={, 1)

which is nondegenerate and thus Poincaré duality holds. Finally, one easily checks that
I[D2. m2)]|| = '“d;xz'
12
Let us now assume thé#,,, H,, D,) together withr,, x, and.7, have been constructed
forn > 2. To build the order 4 1 spectral triple, we merely imitate the= 2 construction.
Let us taked = C"** and

n—1 .
Hn = anl 7] (@17{;)

with H, = C3Vi, n. With respect to the previous decomposition all operatdrsorre-
sponding taD, &, x andJ are block diagonal and defined inductively as

n-1 .
O0n=0,1® (_1691(9,’1) .
ie
As in then = 2 case, we define

n,’;(x;,x,l) = diag(x;, x,, xn), X,’; =diag1, -1, 1).

The Dirac operatoD,, and the charge conjugatiqp, are defined as

1
o 00 1
. 1 1 .
pDi=|-— o =], J=|o0o1o0]c
dinldin
1 00
o — O
din

Then it is easy to check that all axioms but Poincaré duality hold using the induction
assumption and the block diagonal nature of the construction.
The multiplicity matrix of this spectral triple is

o 1 ... 1
1 -1
Mp =
1
1 ... 1 —-(nn-1

If N is any positive integer, we can always consider the trivial spectral @eC" &
CN, 0) with obvious representation and charge conjugation and whose chirality is equal
to —1. If we take the direct sum of this spectral triple witd,,, #,, D,), the resulting
multiplicity matrix isu,, +NI,,, which is nondegenerate forsufficiently large. Accordingly,
Poincaré duality will be satisfied.
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Finally, the computation of the norm of the commutatfP,,, 7, (a)]| follows easily
from the block diagonal structure and the induction assumption. O

To complete the Proof of Proposition 13, we use the previous lemma to construct a
spectral triple(A, #, D) fulfilling condition (16). If a verifies the norm condition, then
la; —a;| < dij, sod(i, j) < dj.
Furthermore, if we fix any two points such that < oo and takex; = dik (which is
finite thanks to triangular inequality) one hag — x| = djj. Another application of the
triangular inequality yield&dix — dii| < dy for anyk and! so that||[D, = (x)]|| < 1 by (16).
This shows thatlj < d(i, j) so that the equality holds whefj is finite.
If djj is infinite, so arelik anddj for anyk. Thus, the inequality (16) does not constraint
x; andx; since the corresponding matrix element@fvanish. Therefore, we can send
|x; — x;| to infinity and we also havé(i, j) = dj.

10. Conclusion

As a conclusion of previous discussion, we may say that once givenC", there is
no constraint arising from the axioms of noncommutative geometry. Such constraints may
only appear if one imposes some extra conditions, such as fiirg C" as we did in
the discussion of the three- and four-point cases. We stress that we only showed that the
map which associates a metric to a Dirac operator is surjective. In a discrete analogue of a
guantum theory of gravity based on eigenvalues of the Dirac operators [26], one also needs
to know how many Dirac operators correspond to a given metric, as well as the possible
relations between their spectra.

A naive guestion remains unanswered: what does these distances mean? According to
spectral action principle [27], Dirac operator encodes both physics and metrics. In the stan-
dard model, computation of the action leads to the Lagrangian of the full standard model and
the Einstein—Hilbert action of general relativity. So the coding of physics makes sense. But
what about the coding of metrics? For the time being, the answer is clear in the simple contin-
uous case where noncommutative distance is the geodesic distance. Distance inthe geometry
of standard model should have physical meaning, butit has not been explicitly computed yet.
Fortunately, the complications due to Theorem 9 should not appear since the noncommuta-
tive standard model involves commutative algebras tensorizéf),0§) with » less than 3.

Appendix A. Coefficients of Vesf(x, y) in the general four-point case

Mdads — dads)?(djdE + d3(dZ + d))

Va(x) = 412 14 12 12
d3d3did2d?
8x (dads — dads)(dadadsds(d5 + d2) + di(dad3da(d? + d2)
—d?dsd? — d2ds(d? + 2d2)))
V3(x) _ 4 6 2 4 6 i

did3d3dgd2ad?
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4x?
T 3232 32 34 32 32
d?d2d3djd2dz

—2d1dade(dodads(d2 — 2d2) + dzd3ds + d3d3(d3 + 3d2))

Va(x) [d2(d3d2d2 + d?(d3dy — dods)? + d3(d3d2 + (d3 + d2)d?))

+d3(d2(d3ds — dads)? + d?(d2(d5 + d5 + d3)
—6dpd3dads + d3(d2 + 6d2)))]
A(d2(d3(d3 + d + d) + dZ(dZ + 2d3))
—2dadsdadsdg + d (d5dg + d3(d5 + 2d7)))
d3d2d2dzd? ’

8x3(d1de — dada) (drdadada(df + df)
—(d?dod? — d3da(d? + d2)ds + d2(2d? + d2)d2)de)
3 2 44 32 32
didrd3dydzdZ

Vix) =

8x (dadadsde(dads — dods) + d1(d2d3(d5 + d3)
+d2(do(d2 + 2d2) — d3dads)))
didpd3d2d2d3 ’

Ax*(d2d2 + d2(d3 + d2))(dzds — d1d)?

Vo(x) = 4(d3 % +dg * + dg ?) + 424,272
B 2did2d?

4x2(d3(2d3dE + d2(d5 + d2)) — 2d1dadad2ds
| HdP(dE(d] + 2d3) + d3(d} + dE + d}))
did3didzd?

Appendix B. Computation ofd(1, 2) whenl/d> = 1/ds = oo

- d3 + d? (dvds + dadg)  [d? + d2
y1 = Sign(di1des — d3da)de %’ 21 =ds3 1 4 ; 6 ’
dy + dg (dads — drde)?\ d3 + dZ

dil|d3z — da| £ |da(d1 + de)| d3(dy + de)
Y2 = > > 22== > >
V(d3 — dg)? + (d1 + de) V(d3 — dg)? + (d1 + de)
\ = di|d3 + da| £ |da(d1 — de)| = d3(d1 — de)
V(d3 + da)? + (d1 — dp)? V(d3+ dg)? + (d1 — dg)?

The choice of the signs depends on the sign of expressions in modules.
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Appendix C. Computation ofd(1, 3) whenl/ds = 1/ds = oo

2 2 2 2
1d6 — d3da d3 +d§ d? +d2
dada/d? + d3 _ di(d3 + da)
1 =—, X2 = Sign(d1d3 + dade) ;
dads — d1ds V(d3 + da)? + (dy — dp)?
ds (day/(drds + dads)? + do(da(d3 + da) — dads + d))
2 = ,

V(dz + da)? + (dy — de)?(d? + d?)
d1(dz — da)

V(d3 — da)? + (d1 + de)?
da (day/(@rds + dads)? + do(da(da — da) + da(ds + dg))
3 = .
(dads — dide)y/(ds — dg)2 + (d1 + d)?

The choice of the signs depends on the sign of expressions in modules.

x3 = Sign(d1ds + dads)
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